organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(4-Fluorobenzoyl)-3,4,5-trimethoxybenzohydrazide monohydrate

Muhammad Zareef,^a* Rashid Iqbal,^b Ghulam Qadeer,^a Muhammad Arfan^a and Wai-Yeung Wong^c

^aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, ^bDepartment of Chemistry, University of AJ & K, Camp Office H-8, Islamabad 45320, Pakistan, and ^cDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong

Correspondence e-mail: mkzareef71@hotmail.com

Received 17 May 2007; accepted 25 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.145; data-to-parameter ratio = 12.7.

The asymmetric unit of the title compound, $C_{17}H_{19}FN_2O_5 \cdot H_2O$, contains two *N'*-(4-fluorobenzoyl)-3,4,5trimethoxybenzohydrazide molecules and two water molecules. It is an important intermediate for the synthesis of biologically active heterocyclic compounds. The dihedral angles between the planar aromatic rings of the two molecules are 65.52 (3) and 68.48 (3)°. In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds link the molecules to form a supramolecular structure.

Related literature

For general backgroud, see: Zheng *et al.* (2003); Al-Talib *et al.* (1990); Yousif *et al.* (1986); Ahmad *et al.* (2001); Al-Soud *et al.* (2004); El-Emam *et al.* (2004); Allen *et al.* (1987). For related literature, see: Zareef & Iqbal (2007).

Experimental

Crystal data $C_{17}H_{17}FN_2O_5 \cdot H_2O$ $M_r = 366.34$ Monoclinic, $P2_1/c$ a = 8.3845 (5) Å b = 13.2688 (9) Å c = 31.833 (2) Å $\beta = 94.615$ (1)°

 $V = 3530.0 (4) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 294 (2) K $0.34 \times 0.23 \times 0.16 \text{ mm}$

Data collection

```
Bruker SMART CCD
```

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.97, T_{\rm max} = 0.98
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.145$	independent and constrained
S = 1.02	refinement
6146 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
485 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

16960 measured reflections

 $R_{\rm int} = 0.033$

6146 independent reflections

4451 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A····O9	0.86	2.06	2.814 (2)	145
$N2 - H2A \cdots O11$	0.86	2.01	2.821 (3)	157
$N3-H3A\cdots O4^{i}$	0.86	2.00	2.814 (2)	157
$N4 - H4B \cdot \cdot \cdot O12^{ii}$	0.86	2.00	2.765 (2)	147
$O11 - H11A \cdots O10^{iii}$	1.01 (5)	1.93 (5)	2.862 (3)	152 (4)
$O11 - H11B \cdots O5^{iv}$	0.96 (5)	1.92 (5)	2.867 (3)	165 (5)
$O12 - H12A \cdots O10^{v}$	1.08 (5)	1.88 (5)	2.857 (3)	149 (4)
$O12-H12B\cdots O5^{v}$	0.91 (5)	1.94 (5)	2.798 (3)	157 (4)

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors gratefully acknowledge funds from the URF project, Quaid-I-Azam University, Islamabad, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2252).

References

- Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–16.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Al-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Il Farm., 59, 775– 783.
- Al-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun. 20, 1811–1814. Bruker (1998). SMART Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT (Version 6.36a) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak. 8, 183–187.
- Zareef, M. & Iqbal, R. (2007). Phosphorus, Sulfur, Silicon Relat. Elem., 182, 281–298.
- Zheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem. 117, 163–169.

	H O
° ▶NH	н́ И
HN-	
F	

Acta Cryst. (2007). E63, o3052 [doi:10.1107/S1600536807025524]

N'-(4-Fluorobenzoyl)-3,4,5-trimethoxybenzohydrazide monohydrate

M. Zareef, R. Iqbal, G. Qadeer, M. Arfan and W.-Y. Wong

Comment

N,*N*-Diacylhydrazines are important intermediates especially for the synthesis of various biologically active five-membered heterocycles such as 2,5-disubstituted-1,3,4-oxadiazoles (Zheng *et al.*, 2003; Al-Talib *et al.*, 1990) and 5-substituted-2-mer-capto-1,3,4-oxadiazoles (Yousif *et al.*, 1986; Ahmad *et al.*, 2001; Al-Soud *et al.*, 2004; El-Emam *et al.*, 2004). In view of the versatility of these compounds, we have synthesized the title compound, (I), using a literature method (Zareef & Iqbal, 2007) and reported its crystal structure.

The asymmetric unit of the title compound, (I), contains two N-(4-fluorobenzoyl)-3,4,5-trimethoxybenzohydrazide and two water molecules (Fig. 1), in which the bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

Rings A (C1—C6), B (C12—C17) and C (C18—C23), D (C29—C34) are, of course, planar and the dihedral angles between them are A/B = 65.52 (3)° and C/D = 68.48 (3)°.

In the crystal structure, the intramolecular N—H…O and intermolecular N—H…O and O—H…O hydrogen bonds (Table 1) link the molecules to form a supramolecular structure, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of (I), 4-fluorobenzoyl chloride (0.8 g, 5.1 mmol) was added in portions to a suspension of 3,4,5-trimethoxybenzoic hydrazide monohydrate (1.22 g, 5.0 mmol) in dry acetonitrile (50 ml), and the reaction mixture stirred for 7 h at 296 K. Then, the mixture was concentrated, and the solid product filtered and recrystallized from aqueous ethanol to afford the title compound (yield; 93%, m.p. 464–465 K). Suitable crystals were grown from a solution of (I) in ethanol by slow evaporation at room temperature.

Refinement

H atoms of water molecules were located in difference syntheses and refined isotropically [O—H = 0.91 (4)–1.08 (5) Å and $U_{iso}(H) = 0.150 (18)-0.21 (3) Å^2$]. The remaining H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The systhesis route for the formation of the title compound.

N'-(4-Fluorobenzoyl)-3,4,5-trimethoxybenzohydrazide monohydrate

Crystal data	
$C_{17}H_{17}FN_2O_5{\cdot}H_2O$	$F_{000} = 1536$
$M_r = 366.34$	$D_{\rm x} = 1.379 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 464(1) K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.3845 (5) Å	Cell parameters from 876 reflections
b = 13.2688 (9) Å	$\theta = 2.3 - 24.1^{\circ}$
c = 31.833 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 94.615 \ (1)^{\circ}$	T = 294 (2) K
$V = 3530.0 (4) \text{ Å}^3$	Plate, colorless
Z = 8	$0.34 \times 0.23 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD 6146 independent 6146 independent	endent reflections
Radiation source: fine-focus sealed tube 4451 reflect	tions with $I > 2\sigma(I)$
Monochromator: graphite $R_{\rm int} = 0.033$	
$T = 294(2) \text{ K}$ $\theta_{\text{max}} = 25.0^{\circ}$	o
ω and ϕ scans $\theta_{min}=1.7^o$	
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -9 \rightarrow 9$	
$T_{\min} = 0.97, T_{\max} = 0.98$ $k = -15 \rightarrow 12$	5
16960 measured reflections $l = -37 \rightarrow 29$)

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement

$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2 + 0.8812P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.007$
6146 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
485 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

F 1		1.	1.				• ,	. 1.	1 ,	,	182	
Fractional	atomic	coordinates	and is	ntronic	or Pl	nnvalent	isotron	ic dis	nlacement	narameters	IA^{-}	4
1 / actionat	aiomic	coordinates	unu is	onopic	01 01	juivaieni	isonop	ic and	pracement	parameters	(11)	1

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1353 (3)	0.62029 (16)	0.07074 (6)	0.0405 (5)
C2	0.2948 (3)	0.59103 (15)	0.07040 (6)	0.0394 (5)
C3	0.3980 (2)	0.59930 (15)	0.10683 (6)	0.0361 (5)
C4	0.3424 (2)	0.63769 (15)	0.14381 (6)	0.0347 (5)
H4A	0.4112	0.6443	0.1681	0.042*
C5	0.1821 (2)	0.66597 (14)	0.14378 (6)	0.0324 (4)
C6	0.0785 (3)	0.65717 (16)	0.10768 (6)	0.0377 (5)
H6A	-0.0283	0.6758	0.1082	0.045*
C7	-0.1246 (3)	0.6025 (2)	0.03532 (8)	0.0664 (8)
H7A	-0.1742	0.5944	0.0073	0.100*
H7B	-0.1631	0.6632	0.0474	0.100*
H7C	-0.1505	0.5458	0.0522	0.100*
C8	0.3834 (4)	0.6156 (2)	0.00231 (9)	0.0735 (9)
H8A	0.4212	0.5784	-0.0208	0.110*
H8B	0.4637	0.6630	0.0127	0.110*
H8C	0.2874	0.6512	-0.0072	0.110*
C9	0.6570 (3)	0.5665 (2)	0.14045 (8)	0.0581 (7)
H9A	0.7592	0.5409	0.1339	0.087*
H9B	0.6152	0.5250	0.1617	0.087*
H9C	0.6692	0.6343	0.1507	0.087*
C10	0.1128 (2)	0.70154 (14)	0.18295 (6)	0.0329 (5)
C11	0.1289 (2)	0.71749 (15)	0.27885 (6)	0.0356 (5)
C12	0.0682 (3)	0.75824 (16)	0.31808 (6)	0.0390 (5)
C13	0.0654 (4)	0.6931 (2)	0.35163 (8)	0.0656 (8)
H13A	0.1003	0.6271	0.3489	0.079*

C14	0.0112 (5)	0.7247 (3)	0.38937 (9)	0.0876 (11)
H14A	0.0098	0.6807	0.4121	0.105*
C15	-0.0398 (4)	0.8209 (3)	0.39262 (9)	0.0763 (9)
C16	-0.0401 (4)	0.8875 (2)	0.36048 (9)	0.0693 (8)
H16A	-0.0765	0.9530	0.3637	0.083*
C17	0.0147 (3)	0.85632 (17)	0.32281 (7)	0.0520 (6)
H17A	0.0157	0.9014	0.3004	0.062*
C18	0.6326 (3)	0.88247 (16)	0.06547 (6)	0.0404 (5)
C19	0.7901 (3)	0.91489 (16)	0.06329 (6)	0.0410 (5)
C20	0.8925 (3)	0.92140 (16)	0.09979 (7)	0.0395 (5)
C21	0.8393 (2)	0.89549 (15)	0.13871 (6)	0.0374 (5)
H21A	0.9079	0.8993	0.1631	0.045*
C22	0.6817 (2)	0.86384 (14)	0.14043 (6)	0.0331 (4)
C23	0.5787 (3)	0.85736 (16)	0.10412 (6)	0.0387 (5)
H23A	0.4736	0.8362	0.1057	0.046*
C24	0.3742 (3)	0.8852 (2)	0.02942 (9)	0.0699 (8)
H24A	0.3242	0.8818	0.0012	0.105*
H24B	0.3470	0.9478	0.0421	0.105*
H24C	0.3373	0.8302	0.0457	0.105*
C25	0.8852 (5)	0.8736 (3)	-0.00250 (10)	0.0913 (11)
H25A	0.9205	0.9053	-0.0272	0.137*
H25B	0.7937	0.8321	-0.0103	0.137*
H25C	0.9698	0.8327	0.0105	0.137*
C26	1.1576 (3)	0.9561 (2)	0.12892 (8)	0.0651 (8)
H26A	1.2562	0.9837	0.1207	0.098*
H26B	1.1747	0.8879	0.1383	0.098*
H26C	1.1206	0.9957	0.1514	0.098*
C27	0.6136 (2)	0.84363 (14)	0.18144 (6)	0.0332 (5)
C28	0.6198 (2)	0.71404 (15)	0.26891 (6)	0.0364 (5)
C29	0.5681 (3)	0.71889 (15)	0.31265 (6)	0.0378 (5)
C30	0.5624 (3)	0.80734 (17)	0.33588 (7)	0.0569 (7)
H30A	0.5917	0.8679	0.3240	0.068*
C31	0.5136 (4)	0.8065 (2)	0.37639 (8)	0.0707 (9)
H31A	0.5091	0.8659	0.3918	0.085*
C32	0.4727 (4)	0.7175 (2)	0.39295 (8)	0.0637 (7)
C33	0.4743(3)	0.62851(19)	0 37147 (8)	0.0605 (7)
H33A	0.4433	0.5688	0.3837	0.073*
C34	0.5231 (3)	0.62949 (17)	0.33105 (7)	0.0486 (6)
H34A	0.5259	0.5696	0.3160	0.058*
F1	-0.0941 (3)	0.85145 (18)	0.42954 (6)	0.1304 (9)
F2	0 4249 (3)	0 71612 (15)	0 43261 (5)	0 1053 (7)
H11A	0.227(6)	1 024 (4)	0.2480(16)	0.21 (3)*
H12A	0.524 (6)	0.029 (4)	0.2616 (14)	0.166 (19)*
H11B	0.020(6)	1.030(4)	0 2369 (15)	0 17 (2)*
H12B	0.732 (5)	0.038 (4)	0.2605 (13)	0.150 (18)*
N1	0.2139 (2)	0.75011 (13)	0.21121 (5)	0.0383 (4)
HIA	0.3115	0.7602	0.2059	0.046*
N2	0.1603 (2)	0.78397 (13)	0.24905 (5)	0.0386 (4)
H2A	0.1475	0.8474	0.2532	0.046*

N3	0.7156 (2)	0.80515 (13)	0.21211 (5)	0.0392 (4)
H3A	0.8085	0.7838	0.2066	0.047*
N4	0.6678 (2)	0.80059 (13)	0.25281 (5)	0.0399 (4)
H4B	0.6692	0.8544	0.2679	0.048*
01	0.0433 (2)	0.60855 (14)	0.03384 (5)	0.0601 (5)
O2	0.3502 (2)	0.54784 (12)	0.03520 (5)	0.0515 (4)
O3	0.55010 (18)	0.56535 (12)	0.10374 (5)	0.0499 (4)
O4	-0.02783 (17)	0.68598 (12)	0.18909 (5)	0.0460 (4)
O5	0.1502 (2)	0.62589 (11)	0.27442 (5)	0.0493 (4)
O6	0.5408 (2)	0.87890 (15)	0.02826 (5)	0.0631 (5)
O7	0.8433 (2)	0.94808 (13)	0.02612 (5)	0.0571 (5)
O8	1.04171 (19)	0.95777 (14)	0.09416 (5)	0.0576 (5)
O9	0.47413 (17)	0.86429 (12)	0.18701 (5)	0.0448 (4)
O10	0.6223 (2)	0.63466 (11)	0.24890 (5)	0.0556 (5)
011	0.1199 (3)	0.99373 (14)	0.23830 (7)	0.0737 (6)
012	0.6459 (3)	0.00454 (12)	0.26922 (5)	0.0567 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0457 (13)	0.0455 (12)	0.0300 (11)	-0.0021 (10)	0.0022 (9)	-0.0024 (9)
C2	0.0484 (14)	0.0371 (11)	0.0343 (11)	0.0001 (10)	0.0132 (9)	-0.0059 (9)
C3	0.0339 (12)	0.0360 (11)	0.0398 (12)	0.0024 (9)	0.0115 (9)	-0.0010 (9)
C4	0.0334 (12)	0.0372 (11)	0.0337 (11)	-0.0007 (9)	0.0047 (8)	-0.0037 (8)
C5	0.0325 (11)	0.0325 (10)	0.0331 (11)	-0.0004 (8)	0.0074 (8)	-0.0019 (8)
C6	0.0340 (12)	0.0426 (12)	0.0368 (12)	0.0024 (9)	0.0054 (9)	-0.0008 (9)
C7	0.0518 (17)	0.092 (2)	0.0533 (16)	-0.0062 (14)	-0.0099 (12)	-0.0093 (14)
C8	0.098 (2)	0.0757 (19)	0.0520 (16)	0.0077 (17)	0.0375 (15)	0.0017 (14)
C9	0.0367 (14)	0.0726 (17)	0.0648 (16)	0.0087 (12)	0.0016 (12)	-0.0125 (13)
C10	0.0325 (12)	0.0340 (10)	0.0329 (11)	0.0031 (8)	0.0067 (8)	0.0006 (8)
C11	0.0357 (12)	0.0336 (11)	0.0378 (11)	-0.0021 (9)	0.0039 (9)	-0.0024 (9)
C12	0.0393 (12)	0.0433 (12)	0.0349 (11)	-0.0050 (9)	0.0060 (9)	-0.0057 (9)
C13	0.094 (2)	0.0544 (15)	0.0513 (16)	0.0097 (14)	0.0241 (14)	0.0082 (12)
C14	0.136 (3)	0.085 (2)	0.0462 (17)	0.009 (2)	0.0385 (18)	0.0165 (15)
C15	0.105 (3)	0.086 (2)	0.0426 (16)	-0.0062 (18)	0.0323 (15)	-0.0172 (15)
C16	0.098 (2)	0.0535 (15)	0.0608 (18)	-0.0028 (15)	0.0338 (16)	-0.0194 (13)
C17	0.0719 (17)	0.0432 (13)	0.0433 (13)	0.0008 (12)	0.0189 (12)	-0.0027 (10)
C18	0.0456 (13)	0.0433 (12)	0.0318 (11)	0.0008 (10)	-0.0001 (9)	-0.0005 (9)
C19	0.0515 (14)	0.0390 (11)	0.0338 (11)	0.0031 (10)	0.0109 (10)	0.0068 (9)
C20	0.0372 (12)	0.0406 (11)	0.0421 (12)	-0.0018 (9)	0.0118 (9)	0.0062 (9)
C21	0.0360 (12)	0.0417 (12)	0.0348 (11)	-0.0021 (9)	0.0044 (9)	0.0046 (9)
C22	0.0341 (12)	0.0332 (10)	0.0328 (11)	0.0007 (8)	0.0067 (8)	0.0018 (8)
C23	0.0336 (12)	0.0429 (12)	0.0399 (12)	-0.0025 (9)	0.0053 (9)	0.0007 (9)
C24	0.0629 (19)	0.086 (2)	0.0573 (17)	0.0096 (15)	-0.0176 (13)	-0.0017 (14)
C25	0.133 (3)	0.086 (2)	0.0627 (19)	-0.009 (2)	0.054 (2)	-0.0037 (17)
C26	0.0387 (14)	0.089 (2)	0.0673 (17)	-0.0166 (14)	0.0037 (12)	0.0139 (15)
C27	0.0322 (12)	0.0315 (10)	0.0364 (11)	-0.0038 (8)	0.0066 (9)	-0.0020 (8)
C28	0.0364 (12)	0.0345 (11)	0.0387 (11)	0.0035 (9)	0.0051 (9)	-0.0004 (9)

C29	0.0423 (13)	0.0372 (11)	0.0345 (11)	0.0032 (9)	0.0073 (9)	0.0063 (9)
C30	0.091 (2)	0.0363 (12)	0.0460 (14)	-0.0039 (12)	0.0246 (13)	0.0037 (10)
C31	0.122 (3)	0.0474 (15)	0.0465 (15)	0.0005 (15)	0.0322 (16)	-0.0049 (12)
C32	0.091 (2)	0.0657 (17)	0.0374 (14)	0.0067 (15)	0.0253 (13)	0.0089 (12)
C33	0.087 (2)	0.0482 (14)	0.0496 (15)	-0.0017 (13)	0.0222 (13)	0.0181 (12)
C34	0.0644 (16)	0.0367 (12)	0.0461 (13)	0.0004 (11)	0.0129 (11)	0.0033 (10)
F1	0.205 (3)	0.1345 (18)	0.0614 (12)	0.0040 (18)	0.0715 (14)	-0.0247 (12)
F2	0.181 (2)	0.0936 (13)	0.0492 (10)	0.0023 (13)	0.0573 (11)	0.0106 (9)
N1	0.0356 (10)	0.0485 (10)	0.0327 (9)	-0.0055 (8)	0.0138 (7)	-0.0089 (8)
N2	0.0494 (11)	0.0326 (9)	0.0352 (9)	-0.0036 (8)	0.0124 (8)	-0.0065 (7)
N3	0.0387 (10)	0.0498 (11)	0.0309 (9)	0.0065 (8)	0.0138 (8)	0.0039 (8)
N4	0.0548 (12)	0.0353 (9)	0.0314 (9)	-0.0017 (8)	0.0141 (8)	-0.0013 (7)
01	0.0526 (11)	0.0931 (13)	0.0337 (9)	0.0022 (9)	-0.0013 (7)	-0.0112 (8)
O2	0.0663 (11)	0.0540 (10)	0.0363 (9)	0.0052 (8)	0.0180 (7)	-0.0095 (7)
03	0.0385 (9)	0.0629 (10)	0.0497 (10)	0.0115 (7)	0.0117 (7)	-0.0084 (8)
O4	0.0300 (9)	0.0627 (10)	0.0464 (9)	-0.0008 (7)	0.0102 (7)	-0.0091 (7)
05	0.0638 (11)	0.0341 (9)	0.0513 (10)	0.0055 (7)	0.0138 (8)	-0.0020(7)
O6	0.0544 (11)	0.0962 (14)	0.0374 (9)	-0.0030 (10)	-0.0036 (8)	0.0010 (9)
O7	0.0713 (12)	0.0643 (11)	0.0379 (9)	-0.0013 (9)	0.0181 (8)	0.0126 (8)
08	0.0398 (9)	0.0815 (12)	0.0524 (10)	-0.0144 (8)	0.0102 (7)	0.0173 (9)
09	0.0314 (9)	0.0547 (9)	0.0496 (9)	-0.0010(7)	0.0115 (7)	0.0003 (7)
O10	0.0804 (13)	0.0363 (9)	0.0528 (10)	-0.0035 (8)	0.0222 (9)	-0.0072 (7)
011	0.0760 (15)	0.0430 (10)	0.1049 (16)	0.0036 (10)	0.0246 (12)	0.0115 (10)
012	0.0779 (14)	0.0358 (9)	0.0578 (11)	-0.0084 (9)	0.0150 (9)	0.0026 (7)

Geometric parameters (Å, °)

C1—O1	1.361 (3)	C20—O8	1.366 (3)
C1—C6	1.393 (3)	C20—C21	1.393 (3)
C1—C2	1.393 (3)	C21—C22	1.392 (3)
C2—O2	1.373 (2)	C21—H21A	0.9300
C2—C3	1.394 (3)	C22—C23	1.389 (3)
C3—O3	1.364 (2)	C22—C27	1.490 (3)
C3—C4	1.396 (3)	C23—H23A	0.9300
C4—C5	1.396 (3)	C24—O6	1.403 (3)
C4—H4A	0.9300	C24—H24A	0.9600
C5—C6	1.389 (3)	C24—H24B	0.9600
C5—C10	1.494 (3)	C24—H24C	0.9600
С6—Н6А	0.9300	C25—O7	1.407 (3)
C7—O1	1.415 (3)	C25—H25A	0.9600
С7—Н7А	0.9600	С25—Н25В	0.9600
С7—Н7В	0.9600	C25—H25C	0.9600
С7—Н7С	0.9600	C26—O8	1.413 (3)
C8—O2	1.425 (3)	C26—H26A	0.9600
C8—H8A	0.9600	С26—Н26В	0.9600
C8—H8B	0.9600	C26—H26C	0.9600
C8—H8C	0.9600	C27—O9	1.228 (2)
С9—ОЗ	1.415 (3)	C27—N3	1.346 (3)
С9—Н9А	0.9600	C28—O10	1.232 (2)

С9—Н9В	0.9600	C28—N4	1.333 (3)
С9—Н9С	0.9600	C28—C29	1.493 (3)
C10—O4	1.228 (2)	C29—C34	1.389 (3)
C10—N1	1.349 (3)	C29—C30	1.390 (3)
C11—O5	1.238 (2)	C30—C31	1.384 (3)
C11—N2	1.337 (3)	C30—H30A	0.9300
C11—C12	1.488 (3)	C31—C32	1.349 (4)
C12—C13	1.376 (3)	C31—H31A	0.9300
C12—C17	1.389 (3)	C32—F2	1.355 (3)
C13—C14	1.383 (4)	C32—C33	1.365 (4)
C13—H13A	0.9300	C33—C34	1.381 (3)
C14—C15	1.353 (4)	С33—Н33А	0.9300
C14—H14A	0.9300	C34—H34A	0.9300
C15—C16	1.351 (4)	N1—N2	1.393 (2)
C15—F1	1.356 (3)	N1—H1A	0.8600
C16—C17	1.381 (3)	N2—H2A	0.8600
C16—H16A	0.9300	N3—N4	1.388 (2)
С17—Н17А	0.9300	N3—H3A	0.8600
C18—O6	1.360 (3)	N4—H4B	0.8600
C18—C23	1.385 (3)	O11—H11A	1.01 (6)
C18—C19	1.396 (3)	O11—H11B	0.97 (6)
C19—O7	1.370 (2)	O12—H12A	1.08 (5)
C19—C20	1.391 (3)	O12—H12B	0.91 (4)
01—C1—C6	124.0 (2)	C22—C21—H21A	120.6
O1—C1—C2	116.06 (18)	C20—C21—H21A	120.6
C6—C1—C2	119.88 (19)	C23—C22—C21	120.98 (18)
O2—C2—C1	120.72 (19)	C23—C22—C27	117.48 (18)
O2—C2—C3	118.93 (19)	C21—C22—C27	121.36 (18)
C1—C2—C3	120.23 (18)	C18—C23—C22	119.9 (2)
O3—C3—C2	115.82 (17)	C18—C23—H23A	120.0
O3—C3—C4	123.94 (19)	C22—C23—H23A	120.0
C2—C3—C4	120.21 (19)	O6—C24—H24A	109.5
C5—C4—C3	118.95 (19)	O6—C24—H24B	109.5
C5—C4—H4A	120.5	H24A—C24—H24B	109.5
C3—C4—H4A	120.5	O6—C24—H24C	109.5
C6—C5—C4	121.08 (18)	H24A—C24—H24C	109.5
C6—C5—C10	117.25 (18)	H24B—C24—H24C	109.5
C4—C5—C10	121.59 (17)	O7—C25—H25A	109.5
C5—C6—C1	119.6 (2)	O7—C25—H25B	109.5
С5—С6—Н6А	120.2	H25A—C25—H25B	109.5
С1—С6—Н6А	120.2	O7—C25—H25C	109.5
O1—C7—H7A	109.5	H25A—C25—H25C	109.5
O1—C7—H7B	109.5	H25B—C25—H25C	109.5
H7A—C7—H7B	109.5	O8—C26—H26A	109.5
O1—C7—H7C	109.5	O8—C26—H26B	109.5
H7A—C7—H7C	109.5	H26A—C26—H26B	109.5
H7B—C7—H7C	109.5	O8—C26—H26C	109.5
O2—C8—H8A	109.5	H26A—C26—H26C	109.5
O2—C8—H8B	109.5	H26B—C26—H26C	109.5

H8A—C8—H8B	109.5	O9—C27—N3	122.46 (18)
O2—C8—H8C	109.5	O9—C27—C22	121.52 (18)
H8A—C8—H8C	109.5	N3—C27—C22	115.97 (17)
H8B—C8—H8C	109.5	O10-C28-N4	121.32 (19)
O3—C9—H9A	109.5	O10—C28—C29	122.51 (19)
О3—С9—Н9В	109.5	N4—C28—C29	116.15 (18)
Н9А—С9—Н9В	109.5	C34—C29—C30	118.3 (2)
O3—C9—H9C	109.5	C34—C29—C28	117.77 (19)
Н9А—С9—Н9С	109.5	C30—C29—C28	123.89 (19)
Н9В—С9—Н9С	109.5	C31—C30—C29	121.0 (2)
O4—C10—N1	122.27 (18)	C31—C30—H30A	119.5
O4—C10—C5	121.50 (18)	С29—С30—Н30А	119.5
N1—C10—C5	116.22 (17)	C32—C31—C30	118.3 (2)
O5-C11-N2	121.91 (19)	С32—С31—Н31А	120.8
O5-C11-C12	120.96 (19)	C30—C31—H31A	120.8
N2-C11-C12	117.12 (18)	C31—C32—F2	118.6 (2)
C13—C12—C17	118.6 (2)	C31—C32—C33	123.3 (2)
C13—C12—C11	116.9 (2)	F2—C32—C33	118.1 (2)
C17—C12—C11	124.5 (2)	C32—C33—C34	118.3 (2)
C12—C13—C14	120.7 (3)	С32—С33—Н33А	120.8
С12—С13—Н13А	119.6	С34—С33—Н33А	120.8
C14—C13—H13A	119.6	C33—C34—C29	120.8 (2)
C15—C14—C13	118.7 (3)	С33—С34—Н34А	119.6
C15—C14—H14A	120.6	С29—С34—Н34А	119.6
C13—C14—H14A	120.6	C10—N1—N2	120.11 (16)
C16—C15—C14	122.7 (2)	C10—N1—H1A	119.9
C16-C15-F1	118.7 (3)	N2—N1—H1A	119.9
C14—C15—F1	118.6 (3)	C11—N2—N1	119.74 (17)
C15—C16—C17	118.8 (3)	C11—N2—H2A	120.1
C15-C16-H16A	120.6	N1—N2—H2A	120.1
C17—C16—H16A	120.6	C27—N3—N4	118.66 (17)
C16—C17—C12	120.5 (2)	C27—N3—H3A	120.7
С16—С17—Н17А	119.8	N4—N3—H3A	120.7
C12—C17—H17A	119.8	C28—N4—N3	121.00 (17)
O6—C18—C23	124.3 (2)	C28—N4—H4B	119.5
O6—C18—C19	116.01 (19)	N3—N4—H4B	119.5
C23—C18—C19	119.73 (19)	C1—O1—C7	118.31 (18)
O7—C19—C20	118.6 (2)	C2—O2—C8	115.80 (18)
O7—C19—C18	121.13 (19)	C3—O3—C9	118.12 (17)
C20-C19-C18	120.05 (18)	C18—O6—C24	118.01 (19)
O8—C20—C19	115.02 (18)	C19—O7—C25	116.67 (19)
O8—C20—C21	124.5 (2)	C20—O8—C26	118.12 (18)
C19—C20—C21	120.5 (2)	H11A—O11—H11B	124 (4)
C22—C21—C20	118.83 (19)	H12A—O12—H12B	123 (4)
O1—C1—C2—O2	-3.5 (3)	C20—C21—C22—C27	-174.65 (19)
C6—C1—C2—O2	175.32 (19)	O6—C18—C23—C22	-179.8 (2)
O1—C1—C2—C3	-179.37 (19)	C19—C18—C23—C22	-0.5 (3)
C6—C1—C2—C3	-0.5 (3)	C21—C22—C23—C18	0.1 (3)
O2—C2—C3—O3	1.8 (3)	C27—C22—C23—C18	175.33 (18)

C1—C2—C3—O3	177.72 (19)	C23—C22—C27—O9		-31.8 (3)
O2—C2—C3—C4	-176.40 (18)	C21—C22—C27—O9		143.4 (2)
C1—C2—C3—C4	-0.5 (3)	C23—C22—C27—N3		150.57 (19)
O3—C3—C4—C5	-177.07 (18)	C21—C22—C27—N3		-34.2 (3)
C2—C3—C4—C5	1.0 (3)	O10—C28—C29—C34		0.7 (3)
C3—C4—C5—C6	-0.5 (3)	N4—C28—C29—C34		-177.6 (2)
C3—C4—C5—C10	176.16 (18)	O10—C28—C29—C30		-179.3 (2)
C4—C5—C6—C1	-0.5 (3)	N4-C28-C29-C30		2.4 (3)
C10-C5-C6-C1	-177.29 (18)	C34—C29—C30—C31		0.2 (4)
01-C1-C6-C5	179.8 (2)	C28—C29—C30—C31		-179.8 (2)
C2—C1—C6—C5	1.0 (3)	C29—C30—C31—C32		0.5 (5)
C6—C5—C10—O4	28.4 (3)	C30—C31—C32—F2		179.9 (3)
C4—C5—C10—O4	-148.3 (2)	C30—C31—C32—C33		-1.2 (5)
C6-C5-C10-N1	-152.48 (19)	C31—C32—C33—C34		1.3 (5)
C4C5C10N1	30.8 (3)	F2-C32-C33-C34		-179.9 (3)
O5-C11-C12-C13	11.6 (3)	C32—C33—C34—C29		-0.5 (4)
N2-C11-C12-C13	-167.8 (2)	C30—C29—C34—C33		-0.2 (4)
O5-C11-C12-C17	-168.1 (2)	C28—C29—C34—C33		179.9 (2)
N2-C11-C12-C17	12.4 (3)	O4-C10-N1-N2		0.5 (3)
C17—C12—C13—C14	-0.4 (4)	C5-C10-N1-N2		-178.61 (17)
C11—C12—C13—C14	179.8 (3)	O5-C11-N2-N1		2.0 (3)
C12-C13-C14-C15	0.3 (5)	C12—C11—N2—N1		-178.50 (18)
C13—C14—C15—C16	0.1 (6)	C10—N1—N2—C11		71.4 (3)
C13—C14—C15—F1	179.5 (3)	O9—C27—N3—N4		-8.4 (3)
C14—C15—C16—C17	-0.4 (5)	C22—C27—N3—N4		169.24 (16)
F1-C15-C16-C17	-179.8 (3)	O10-C28-N4-N3		2.9 (3)
C15—C16—C17—C12	0.3 (4)	C29—C28—N4—N3		-178.77 (18)
C13—C12—C17—C16	0.0 (4)	C27—N3—N4—C28		102.7 (2)
C11—C12—C17—C16	179.8 (2)	C6-C1-O1-C7		-20.6 (3)
O6—C18—C19—O7	4.7 (3)	C2-C1-O1-C7		158.2 (2)
C23—C18—C19—O7	-174.6 (2)	C1—C2—O2—C8		78.9 (3)
O6—C18—C19—C20	179.7 (2)	C3—C2—O2—C8		-105.2 (3)
C23—C18—C19—C20	0.3 (3)	C2—C3—O3—C9		-176.3 (2)
O7—C19—C20—O8	-2.4 (3)	C4—C3—O3—C9		1.8 (3)
C18—C19—C20—O8	-177.52 (19)	C23—C18—O6—C24		23.3 (3)
O7—C19—C20—C21	175.25 (19)	C19—C18—O6—C24		-156.0 (2)
C18—C19—C20—C21	0.2 (3)	C20—C19—O7—C25		104.8 (3)
O8—C20—C21—C22	176.9 (2)	C18—C19—O7—C25		-80.2 (3)
C19—C20—C21—C22	-0.5 (3)	C19—C20—O8—C26		-173.2 (2)
C20—C21—C22—C23	0.4 (3)	C21—C20—O8—C26		9.3 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A…O9	0.86	2.06	2.814 (2)	145
N2—H2A…O11	0.86	2.01	2.821 (3)	157
N3—H3A····O4 ⁱ	0.86	2.00	2.814 (2)	157

0.86

2.00

N3—H3A…O4ⁱ

N4—H4B…O12ⁱⁱ

147

2.765 (2)

O11—H11A…O10 ⁱⁱⁱ	1.01 (5)	1.93 (5)	2.862 (3)	152 (4)
O11—H11B····O5 ^{iv}	0.96 (5)	1.92 (5)	2.867 (3)	165 (5)
O12—H12A…O10 ^v	1.08 (5)	1.88 (5)	2.857 (3)	149 (4)
O12—H12B····O5 ^v	0.91 (5)	1.94 (5)	2.798 (3)	157 (4)

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+1, y+1/2, -z+1/2; (iv) -x, y+1/2, -z+1/2; (v) -x+1, y-1/2, -z+1/2.

Fig. 2

N'-(4-fluorobenzoyl)-3,4,5-trimethoxy benzohydrazide monohydrate